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Abstract A new methodology for understanding the construction of polyhedral
links has been developed on the basis of the Platonic solids by using our method of
the ‘n-branched curves and m-twisted double-lines covering’. There are five classes
of platonic polyhedral links we can construct: the tetrahedral links; the hexahedral
links; the octahedral links; the dodecahedral links; the icosahedral links. The tetrahe-
dral links, hexahedral links, and dodecahedral links are, respectively, assembled by
using the method of the ‘3-branched curves and m-twisted double-lines covering’,
whereas the octahedral links and dodecahedral links are, respectively, made by using
the method of the ‘4-branched curves’ and ‘5-branched curves’, as well as ‘m-twisted
double-lines covering’. Moreover, the analysis relating topological properties and link
invariants is of considerable importance. Link invariants are powerful tools to clas-
sify and measure the complexity of polyhedral catenanes. This study provides further
insight into the molecular design, as well as theoretical characterization, of the DNA
polyhedral catenanes.

Keywords Platonic polyhedra · Polyhedral links · Knot theory · Link invariants ·
DNA catenanes

1 Introduction

One challenge in supramolecular chemistry is the design of building blocks to attain
total control of the arrangement of molecular knots and links [1–6]. Polyhedral links
or catenanes, the interlinked and interlocked architectures, have been synthesized by
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Fig. 1 The method for ‘n-branched curves and m-twisted double-lines covering’

using branched DNA molecules [7–13]. DNA three-dimension structures include some
Platonic and Archimedean solids and, more recently, DNA bipyramids and buckyballs.
These curious objects provide some topological nontrivial structures embedding in
3-space that give us many novel targets for theoretically characterization using math-
ematical methods [14].

Knot theory is a tool for the study and quantization of configurations of graphs
in Euclidean 3-space (R3) [15–19]. The principles of knot theory have been applied
to the modeling substances of different natures [20–26]. Since topologically linked
protein catenanes were found in 2000 [27], the method of the ‘three-cross-curve and
double-twist-line covering’ has been developed based on polyhedra and carbon nano-
tubes which have trihedral vertices [28–30]. This opens a big door to assembling and
characterizing links on the basis of the skeleton of a polyhedron [31]. However, the
above method is too restrictive to describe polyhedra with arbitrary connectivity of
vertices, such as the octahedron has vertices of order four, and the icosahedron has
vertices of order five.

In this paper, a more general approach, which is based on the vertices connectiv-
ity of the original polyhedron and the principle of DNA branched junctions [32,33]
is proposed. In particular, research on platonic solids [34] is of fundamental impor-
tance in understanding the new approach. Our study reveals that nontrivial platonic
polyhedral links have only rotational point groups [35]. The study of link invariants
and symmetry may provide further insight into the theoretical characterization of the
DNA polyhedral catenanes. This progress could form the basis of future development
of more complex models. Such models can aid synthetic chemists and biologists in
testing and developing their synthetic strategies.

2 An approach to the construction of polyhedral links

In our ‘n-branched curves and m-twisted double-lines covering’ approach, two types
of basic building blocks for polyhedral links are needed [36]. One is an n-branched
curve designed to replace the vertex of a polyhedron, where n is equal to the vertices
degree. Figure 1 shows the example of employing a 3-branched curve to cover a vertex
of degree 3. The other is an m-twisted double-line (m = 0, 1, 2, . . .), which is pro-
posed to replace the edge of a polyhedron. Connection of these two building blocks
can result in some closed loops. Due to the number of twists, loops may be twisted
around the loops that flank it so that trivial or nontrivial link can result.
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Fig. 2 The construction for the Tm -tetrahedral links by the method of the ‘3-branched curves and m-twisted
double-lines covering’

Depending on its vertex degree, we consider the construction of three classes of
platonic polyhedra. The symmetry and some topological properties of relevant links
satisfy the following rules:

(1) A polyhedral link having m double line twists is called a Tm-polyhedral link;
(2) If m=0, the trivial link is obtained and the symmetry of a polyhedron is pre-

served. If m > 0, the pattern of twists destroys the reflection symmetry group and,
therefore, the nontrivial link is chiral;

(3) Given a polyhedron with F faces, E edges, V vertices of degree n, let L denotes the
number of edges that a component covered. If m=0 or m=2k (k = 1, 2, . . .), the
trivial or nontrivial link has F components. If m = 2k+1(k = 1, 2, . . .), the num-
ber of components C of the nontrivial link can be formalized as C = 2E

L = nV
L .

3 Three-regular polyhedral links

The tetrahedron, the hexahedron, and the dodecahedron are all regular of degree three.
Thus, their links can be obtained by the method of the ‘3-branched curves and m-twisted
double-lines covering’. Note that the similar DNA tetrahedral and hexahedral links
have been synthesized already, but except for the DNA dodecahedron, which has been
assembled by a different method [11,12].

For the tetrahedron (Fig. 2a), the Tm-tetrahedral links are obtained, where m is the
twisting number of each double-line. If m=0 (Fig. 2b), the T0-tetrahedral link with Td

symmetry has 4 unlinked loops, thus, it is trivial. If m=2k, the T2k-tetrahedral links
with T symmetry also have 4 linked loops. For instance, the T2-tetrahedral link and
the T4-tetrahedral link are shown in Fig. 2c, d, respectively. If m = 2k + 1, the result-
ing T2k+1-tetrahedral links with T symmetry and each component covers across L=4
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Fig. 3 The Tm -hexahedral links

edges. Hence, the numbers of components equal C = 3. The T1-tetrahedral link and the
T3-tetrahedral link are shown in Fig. 2e, f, respectively.

For the hexahedron (Fig. 3a) and the dodecahedron (Fig. 4a), the Tm-hexahedral
and dodecahedral links are obtained. If m = 0, the T0-hexahedral link (Fig. 3b) and
the T0-dodecahedral link (Fig. 4b), with Oh symmetry has 6 unlinked components, as
well as, with Ih symmetry has 12 unlinked components, respectively. If m = 2k, the
T2k-hexahedral links with O symmetry and the T2k-dodecahedral links with I sym-
metry have 6 and 12 linked components. For instance, the T2-hexahedral link and the
T4-hexahedral link are shown in Fig. 3c, d, respectively, the T2-dodecahedral link and
the T4-dodecahedral link are shown in Fig. 4c, d, respectively. If m = 2k+1, the result-
ing links are the T2k+1-hexahedral links with O symmetry and the T2k+1-dodecahedral
links with I symmetry, each component covers 6 and 10 edges. Hence, their compo-
nents have C=4 and 6. The T1-hexahedral link and the T3-hexahedral link are shown
in Fig. 3e, f, and the T1-decahedral link and the T3-dodecahedral link are shown in
Fig. 4e, f, respectively.

4 Four- and five-regular polyhedral links

The octahedron (Fig. 5a) and the icosahedron (Fig. 6a) are regular of degree four and
five. Thus, their links can be constructed by methods of the ‘4-branched curves and
m-twisted double-lines covering’ and the ‘5-branched curves and m-twisted
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Fig. 4 The Tm -dodecahedral
links

double-lines covering’, respectively. This means that one uses 4-branched and 5-
branched curves to cover V vertices and m-twisted double-lines to replace E edges of
the polyhedron which are then glued together. Note that the DNA octahedron [37] re-
ported in the laboratory is connected by six different four-way junctions and contains
no catenations or knots.

For the Tm-octahedral links, each distinct m gives different octahedral links. For
example, if m=0, it gives the T0-octahedral link. As Fig. 5b indicates, this is a col-
lection of 8 components which has Oh symmetry. If m=2 and m = 4, the T2- and
T4-octahedral links will be generated (Fig. 5c, d). They are both interlocked cages
with 8 components which belong to O symmetry. If m=1 and 3, the resulting T1-
and T3-octahedral links (Fig. 5e, f) both have O symmetry. Each component covers 6
edges, hence the numbers of components equal C=4.

For the Tm-icosahedral links, m=0 gives the T0-icosahedral link. As Fig. 6b indi-
cates, this is a collection of 20 components which has Ih symmetry. If m=2 and m=4,
the generated T2- and T4-icosahedral links are shown in Fig. 6c, d, respectively. They
are both interlocked cages with 20 components which belong to I symmetry. If m=1
and 3, the T1- and T3-icosahedral links with I symmetry that would result are shown
in Fig. 6e, f, respectively. Each component covers 10 edges, hence the numbers of
components are C=6.

123



J Math Chem (2009) 46:592–603 597

Fig. 5 The construction for the Tm -octahedral links by the method of the ‘4-branched curves and m-twisted
double-lines covering’

Fig. 6 The construction for the Tm -icosahedral links by the method of the ‘5-branched curves and m-twisted
double-lines covering’

5 Link invariants

A basic problem in knot theory is determining whether two knots or links are equiv-
alent or not. The extremely useful tools are knot and link invariants, which are
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Fig. 7 Sign convention for
crossings

Cr (L) = min { Cr (D): D is diagram of L}

w (L) = min { |wD)|: D is diagram of L}

Cr (D) = 2, w(D) = -2                      Cr (D) = 3, w(D) = -3 

a b

Fig. 8 Two different diagrams of the hopf link derived from each other by a type I Reidemeister move
(Rmove)

unchanged under three Reidemeister moves. Here, we have calculated several quanti-
ties of links: crossing numbers Cr(L), writhe numbers w(L), linking numbers Lk(L)

and HOMFLY polynomials. Detailed definitions can be found in Ref. [15].
By assigning the same direction to each component of links, ε(p) is given a sign

according to the convention, as shown in Fig. 7, the writhe number w(L) and the
linking number Lk(L) can be calculated by the two following equations:

w(L) =
∑

p∈Cr (L)

ε(p); Lk(L) = 1

2

∑

p∈αi ∩α j

ε(p).

where ε(p) defined to be ±1 if the overpass slants from top left to bottom right or
bottom left to top right, Cr(L) is the set of crossings of an oriented link, and αi ∩ α j

is the set of crossings of two different components.
The numbers of crossings and writhe depend on the representation of knot diagram

D. For example, two different diagrams of the Hopf link are shown in Fig. 8. They
have different crossing numbers Cr(D), and writhe numbers w(D) also change under
the type I Reidemeister moves, i.e., adding or removing extra crossing to a circle.
However, when Cr(L) and w(L) are defined as following, they immediately become
invariants of oriented links L:

Cr(L) = min{Cr(D) : D is diagram of L}
w(L) = min{|w(D)| : D is diagram of L}

Note that linking numbers and HOMFLY polynomials can be used to detect chiral-
ity of knots and links. The configuration is D if Lk(L) > 0, and it is L if Lk(L) < 0
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Fig. 9 Two mirror images of hopf link diagrams of a D configuration, b L configuration

Table 1 Invariants include component numbers C(L), crossing numbers Cr(L), linking numbers Lk(L),
writhe numbers w(L), and configurations, of platonic polyhedral links

Platonic polyhedral links Twist number m C(L) Cr(L) w(L) Lk(L) Configuration

Tetrahedral links 0 4 0 0 0 None

2k 4 12k −12k −6k L

2k + 1 3 6(2k + 1) 0 0 Unknown
Hexahedral links 0 6 0 0 0 None

2k 6 24k −24k −12k L

2k + 1 4 12(2k + 1) 12k 6k D
Octahedral links 0 8 0 0 0 None

2k 8 24k −24k −12k L

2k + 1 4 12(2k + 1) −12k −6k L
Dodecahedral links 0 12 0 0 0 None

2k 12 60k −60k −30k L

2k + 1 6 30(2k + 1) 30k 15k D
Icosahedral links 0 20 0 0 0 None

2k 20 60k −60k −30k L

2k + 1 6 30(2k + 1) −60k −30k L

[38]. The HOMFLY polynomial is a 2-variable knot polynomial, the variables being
v and z. If the HOMFLY polynomial of a link is not symmetric in v, then the link
is topological chiral. Some examples are shown in Fig. 9. For the diagram shown in
Fig. 9a, the linking number is +1, so it belongs to D configuration, and the relating
HOMFLY polynomial is p = z−1(−v3 + v) + zv. For the diagram shown in Fig. 9b,
the linking number is −1, so it belongs to L configuration, and the relating HOMFLY
polynomial is p = z−1(−v−3+v−1)+zv−1. It is easy to find that p(v, z) = p(v−1, z),
this means that these two diagrams are mirror images of one another.

Some invariants of platonic polyhedral links are listed in Table 1, whilst some
HOMFLY polynomials are given in the Appendix.

If m = 0, all configurations are trivial. As a consequence, they are achiral and have
zero linking numbers. The only invariant is the number of component. If m = 2k,
the absolute values of writhe numbers are equal to crossing numbers and all are L
configuration. If m = 2k + 1, the absolute values writhe numbers are equal to the half
of crossing numbers except for the tetrahedral links, which have zero writhe numbers
and linking numbers. Thus, these configurations are unclassified.
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Fig. 10 Two examples of Hamiltonian cycles covering all the vertices of a polyhedral link
a The T1-tetrahedral link graph, b The T1-octahedral link graph

6 Conclusion

In summary, we have presented a general approach to construct a polyhedral link based
on the platonic polyhedron and its vertices degree and paved the way to understanding
the construction of the polyhedral link from an arbitrary polyhedron. This approach
cannot only be applied to a polyhedron which possesses trihedral vertices, such as
the tetrahedron, hexahedron, and dodecahedron, but also to a polyhedron with any
vertices degree, such as the octahedron and icosahedron whose vertices are of order 4
and 5, respectively. The approach can also be applied to irregular graphs.

Furthermore, the symmetrical analysis for platonic polyhedral links shows that the
T0-tetrahedral link, the T0-hexahedral and T0-octahedral links, and the T0-dodecahedral
and T0-icosahedral links possess Td , Oh , and Ih symmetry, respectively. When the
twisting number m > 0, the tetrahedral links, the hexahedral and octahedral links, and
the dodecahedral and icosahedral links belong to T, O, and I symmetry, respectively,
hence, are said to be chiral. On the other hand, the number of components of a poly-
hedral link also depends on the twisting number m. It is equal to the face number
of the polyhedron if m is zero or an even number, and always needs fewer compo-
nents than the face number of the polyhedron for odd m. In particular, for the T2K+1-
tetrahedral and octahedral link graphs, each component corresponds to a Hamiltonian
cycle because it hits every vertices exactly once (Fig. 10). These interesting structures
inspire some fundamental questions in graph theory. We shall discuss them in detail
elsewhere.

Using the knot invariant technique, many of the chemical information of DNA
polyhedra which based on its entanglement are obtained. Such as molecules of larger
crossing numbers migrate more rapidly in gel electrophoresis; topological stereo-
isomers have the same sequence of base pairs but different linking numbers; knot
polynomials have already played a significant role in the description and analysis of
chirality problems of chemistry [39–41]. This not only can help us theoretical classify
and identify these molecules, but also may provide a new insight and new methodology
for further synthesis.
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of China (Nos. 90203012 and 10831001) and Specialized Research Fund for the Doctoral Program of
Higher Education of China (No. 20020730006).
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Appendix

The HOMFLY polynomial is defined by the skein relationship

v−1 PL+ − vPL− = Z PL0

T2-tetrahedral link

z−3
(
−v3 + 3v − 3v−1 + v−3

)
+ z−1

(
−3v3 + 9v − 9v−1 + 3v−3

)

+ z
(
−3v3 + 15v + v−1 + 4v−3 + v−5

)
+ z3

(
−v3 + 12v − 18v−1 + 3v−5

)

+ z5
(

3v − 10v−1 − 3v−3 + v−5
)

+ z7
(
−2v−1 − v−3

)

T2- hexahedral link

z−5
(
−v5 + 5v3 − 10v + 10v−1 − 5v−3 + v−5

)

+ z−3
(
−6v5 + 30v3 − 60v + 60v−1 − 30v−3 + 6v−5

)

+ z−1
(
−15v5 + 87v3 − 190v + 196v−1 − 93v−3 + 13v−5 + 2v−7

)

+ z
(
−20v5 + 154v3 − 396v + 446v−1 − 211v−3 + 19v−5 + 7v−7 + v−9

)

+ z3
(
−15v5 + 171v3 − 580v + 744v−1 − 385v−3 + 10v−5 + 18v−7 + 7v−9

)

+ z5
(
−6v5 + 114v3 − 569v + 982v−1 − 526v−3 − 52v−5 + 31v−7 + 26v−9

)

+ z7
(
−v5 + 41v3 − 337v + 828v−1 − 511v−3 − 146v−5 + 21v−7 + 41v−9

)

+ z9
(

6v3 − 105v + 419v−1 − 349v−3 − 169v−5 − 11v−7 + 29v−9
)

+ z11
(
−13v + 112v−1 − 156v−3 − 99v−5 − 20v−7 + 9v−9

)

+ z13
(

12v−1 − 39v−3 − 28v−5 − 8v−7 + v−9
)

+ z15
(
−4v−3 − 3v−5 − v−7

)

T1-dodecahedral link

z−5
(
−v−1 + 5v−3 − 10v−5 + 10v−7 − 5v−9 + v−11

)

+ z−3
(
−9v−1 + 42v−3 − 78v−5 + 72v−7 − 33v−9 + 6v−11

)

+ z−1
(
−31v−1 + 137v−3 − 235v−5 + 193v−7 − 74v−9 + 10v−11

)
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+ z
(
−42v−1 + 208v−3 − 357v−5 + 206v−7 − 71v−9 + 2v−11

)

+ z3
(

27v−1 + 58v−3 − 231v−5 + 138v−7 + 38v−9 − 30v−11
)

+ z5
(

74v−1 − 124v−3 − 62v−5 − 65v−7 + 191v−9 − 62v−11
)

+ z7
(

3v−1 − 31v−3 − 182v−5 + 77v−7 + 40v−9 − 7v−11
)

+ z9
(
−32v−1 + 105v−3 − 395v−5 + 698v−7 − 551v−9 + 166v−11

)

+ z11
(

56v−3 − 453v−5 + 1289v−7 − 1161v−9 + 317v−11
)

+ z13
(

6v−1 + 6v−3 − 402v−5 + 1375v−7 − 1265v−9 + 300v−11
)

+ z15
(
−v−1 + 31v−3 − 315v−5 + 1006v−7 − 868v−9 + 171v−11

)

+ z17
(
−3v−1 + 36v−3 − 204v−5 + 531v−7 − 399v−9 + 60v−11

)

+ z19
(
−v−1 + 17v−3 − 92v−5 + 208v−7 − 122v−9 + 12v−11

)

+ z21
(

3v−3 − 25v−5 + 59v−7 − 23v−9 + v−11
)

+ z23
(
−3v−5 + 11v−7 − 2v−9

)

+ z25v−7
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